Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Turkderm Turkish Archives of Dermatology and Venereology ; 56:45-47, 2022.
Article in English | EMBASE | ID: covidwho-20245028

ABSTRACT

Certolizumab is a Fab fragment of a humanized monoclonal antibody against tumor necrosis factor-alpha (TNF-alpha). Differing from the other TNF-alpha inhibitors due to the absence of Fc fragment and pegylation, it binds to both the soluble and transmembrane forms of TNF-alpha, creating a strong TNF-alpha blockage. Previously approved for psoriatic arthritis, certolizumab received another approval from FDA in 2018 for the treatment of moderate to severe chronic plaque psoriasis that does not respond to conventional systemic treatments or for which these treatments are contraindicated. Administered via subcutaneous injections, certolizumab also has a low-dose option for patients weighing less than 90 kg. Certolizumab is considered a safe biological drug that can be preferred during pregnancy and lactation.Copyright © 2022 by Turkish Society of Dermatology and Venereology.

2.
Chinese Journal of Biochemistry and Molecular Biology ; 37(1):1-10, 2021.
Article in Chinese | EMBASE | ID: covidwho-20244920

ABSTRACT

COVID-19 is a severe acute respiratory syndrome caused by a novel coronavirus, SARS-CoV- 2.COVID-19 is now a pandemic, and is not yet fully under control.As the surface spike protein (S) mediates the recognition between the virus and cell membrane and the process of cell entry, it plays an important role in the course of disease transmission.The study on the S protein not only elucidates the structure and function of virus-related proteins and explains their cellular entry mechanism, but also provides valuable information for the prevention, diagnosis and treatment of COVII)-19.Concentrated on the S protein of SARS-CoV-2, this review covers four aspects: (1 ) The structure of the S protein and its binding with angiotensin converting enzyme II (ACE2) , the specific receptor of SARS-CoV-2, is introduced in detail.Compared with SARS-CoV, the receptor binding domain (RBD) of the SARS-CoV- 2 S protein has a higher affinity with ACE2, while the affinity of the entire S protein is on the contrary.(2) Currently, the cell entry mechanism of SARS-CoV-2 meditated by the S protein is proposed to include endosomal and non-endosomal pathways.With the recognition and binding between the S protein and ACE2 or after cell entry, transmembrane protease serine 2(TMPRSS2) , lysosomal cathepsin or the furin enzyme can cleave S protein at S1/S2 cleavage site, facilitating the fusion between the virus and target membrane.(3) For the progress in SARS-CoV-2 S protein antibodies, a collection of significant antibodies are introduced and compared in the fields of the target, source and type.(4) Mechanisms of therapeutic treatments for SARS-CoV-2 varied.Though the antibody and medicine treatments related to the SARS-CoV-2 S protein are of high specificity and great efficacy, the mechanism, safety, applicability and stability of some agents are still unclear and need further assessment.Therefore, to curb the pandemic, researchers in all fields need more cooperation in the development of SARS-CoV-2 antibodies and medicines to face the great challenge.Copyright © Palaeogeography (Chinese Edition).All right reserved.

3.
International Journal of Applied Pharmaceutics ; 15(3):1-11, 2023.
Article in English | EMBASE | ID: covidwho-20242785

ABSTRACT

Recent advancements in nanotechnology have resulted in improved medicine delivery to the target site. Nanosponges are three-dimensional drug delivery systems that are nanoscale in size and created by cross-linking polymers. The introduction of Nanosponges has been a significant step toward overcoming issues such as drug toxicity, low bioavailability, and predictable medication release. Using a new way of nanotechnology, nanosponges, which are porous with small sponges (below one microm) flowing throughout the body, have demonstrated excellent results in delivering drugs. As a result, they reach the target place, attach to the skin's surface, and slowly release the medicine. Nanosponges can be used to encapsulate a wide range of medicines, including both hydrophilic and lipophilic pharmaceuticals. The medication delivery method using nanosponges is one of the most promising fields in pharmacy. It can be used as a biocatalyst carrier for vaccines, antibodies, enzymes, and proteins to be released. The existing study enlightens on the preparation method, evaluation, and prospective application in a medication delivery system and also focuses on patents filed in the field of nanosponges.Copyright © 2023 The Authors.

4.
Drug Evaluation Research ; 45(7):1426-1434, 2022.
Article in Chinese | EMBASE | ID: covidwho-20239013

ABSTRACT

In order to comprehensively understand the research hotspots and development trends of Lonicera Japonica Flos in the past 20 years, and to provide intuitive data reference and objective opinions and suggestions for subsequent related research in this field, this study collected 8 871 Chinese literature and 311 English literature related to Lonicera Japonica Flos research in the core collection databases of Wanfang Data), CNKI and Web of Science (WOS) from 2002 to 2021, and conducted bibliometric and visual analysis using vosviewer. The results showed that the research on the active components of Lonicera Japonica Flos based on phenolic acid components, the research on the mechanism of novel coronavirus pneumonia based on data mining and molecular docking technology, and the pharmacological research on the anti-inflammatory and antiviral properties of Lonicera Japonica Flos are the three hot research directions in the may become the future research direction. In this paper, we analyze the research on Lonicera Japonica Flos from five aspects: active ingredients, research methods, formulation and preparation, pharmacological effects and clinical applications, aiming to reveal the research hotspots, frontiers and development trends in this field and provide predictions and references for future research.Copyright © Drug Evaluation Research 2022.

5.
Indian Drugs ; 59(12):55-69, 2022.
Article in English | EMBASE | ID: covidwho-2289722

ABSTRACT

Molnupiravir, a broad-spectrum antiviral is an isopropyl ester prodrug of beta-D-N4-hydroxycytidine. Molnupiravir targets RNA-dependent RNA-polymerase enzyme of the viruses. A new stability-indicating HPLC-method was developed to determine related substances and assay of molnupiravir. Separation was achieved by using Shim-pack GWS C18 column. The method was validated according to current ICH requirements. The calibration plot gave a linear relationship for all known analytes over the concentration range from LOQ to 200%. LOD and LOQ for all known analytes were found in 0.05-0.08 microg mL-1 and 0.12-0.20 microg mL-1, respectively, the mean recovery was found to be 97.79-102.44 %. Study showed that the method, results of robustness, solution stability studies are precise and within the acceptable limits. Molnupiravir was found to degrade in acid, alkali, and oxidative conditions, and was stable in thermal, moisture, and photolytic degradation condition. The method is simple, accurate, precise, and reproducible for routine purity analysis of drug-samples.Copyright © 2022 Indian Drug Manufacturers' Association. All rights reserved.

6.
Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia ; 23(3):314-329, 2021.
Article in Russian | EMBASE | ID: covidwho-2304451

ABSTRACT

Objective. To review and summarize literature data in studies of safety of the drug products used for the pathogenetic treatment of COVID-19. Materials and methods. As the first stage of monitoring the drug's safety, which are used in the treatment of COVID-19 in Russia, a systematic review of studies of the drug's safety profiles was carried out: Mefloquine, hydroxychloroquine, azithromycin, lopinavir/ritonavir, favipiravir, tocilizumab, olokizumab, baricitinib in the international databases Medline, PubMed, ClinicalTrials.gov and Cochrane Library for the period 2019-2021. Results. The review included 51 articles that met the selection criteria. Based on the results of the review, it can be concluded that the safety profile (frequency, severity and severity) of most drugs repurposed for COVID-19 corresponds to those for the registered indications. At the same time, according to world experience, there is an increase in the number of reports of adverse drug reactions of hydroxychloroquine and azithromycin, which is provoked by the active use of these drugs for combination therapy. Conclusions. According to the literature, a high incidence of adverse events was noted in hydroxychloroquine, chloroquine and azithromycin. Subsequent analysis and comparison of the safety profiles of hydroxychloroquine, chloroquine and azithromycin with data from the national automated information system (AIS) database of Roszdravnadzor is a necessary component of effective and safe pharmacotherapy for COVID-19.Copyright © 2021, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. All rights reserved.

7.
Tetrahedron ; 129 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303647

ABSTRACT

Historically organometallic compounds have been used to cure certain diseases with limited applications. Although bismuth belongs to the category of heavy metals, many of its derivatives have found applications in modern drug discovery research, mainly because of its low toxicity and higher bioavailability. Being an eco-friendly mild Lewis acid, compounds having bismuth as a central atom are capable of binding several proteins in humans and other species. Bismuth complexes demonstrated antibacterial potential in syphilis, diarrhea, gastritis, and colitis. Apart from antibacterial activities, bismuth compounds exhibited anticancer, antileishmanial, and some extent of antifungal and other medicinal properties. This article discusses major synthetic methods and pharmacological potentials of bismuth complexes exhibiting in vitro activity to significant clinical performance in a systematic and timely manner.Copyright © 2022 Elsevier Ltd

8.
European Journal of Medicinal Chemistry Reports ; 6 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303478

ABSTRACT

Globally cancer is the second leading cause of death;a drug that can cure cancer with the utmost negligible side effects is still a distant goal. Due to increasing antibiotic resistance, microbial infection remains a grave global health security threat. The ongoing coronavirus pandemic increased the risk of microbial and fungal infection. A new series of 3-(4-methyl-2-arylthiazol-5-yl)-5-aryl-1,2,4-oxadiazole (7a-t) have been synthesized. The structure of synthesized compounds was confirmed by the spectrometric analysis. The newly synthesized compounds were screened for cytotoxic activity against breast cell lines MCF-7 and MDA-MB-231. Against the MCF-7 cell line compounds 7f, 7 g and 7n showed excellent activity with GI50 0.6 muM to <100 nM concentration. Compound 7b showed good activity against MDA-MB-231 cell line with GI50 47 muM. The active derivatives 7b, 7e, 7f, 7 g and 7n were further evaluated for cytotoxicity against the epithelial cell line derived from the human embryonic kidney (HEK 293) and were found nontoxic. The thiazolyl-1,2,4-oxadiazole derivatives were also screened to evaluate theirs in vitro antimicrobial potential against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), Candida albicans (NCIM 3100) and Aspergillus niger (ATCC 504). Amongst the 7a-t derivatives, six compounds 7a, 7d, 7f, 7n, 7o, 7r showed good antifungal activity against C. albicans and eight compounds 7c, 7d, 7 g, 7h, 7i, 7k, 7l and 7o showed good activity against A. niger. The potential cytotoxic and antifungal activity suggested that the thiazolyl-1,2,4-oxadiazole derivatives could assist in the development of lead compounds for the treatment of cancer and microbial infections.Copyright © 2022 The Authors

9.
Clinical Immunology Communications ; 2:118-129, 2022.
Article in English | EMBASE | ID: covidwho-2300163

ABSTRACT

Emerging research shows that innate immunity can also keep the memory of prior experiences, challenging the long-held notion that immunological memory is only the domain of the adaptive immune cells. However, the absence of immunological memory in innate immune responses has recently been brought into question. Now it is known that after a few transient activations, innate immune cells may acquire immunological memory phenotype, resulting in a stronger response to a subsequent secondary challenge. When exposed to particular microbial and/or inflammatory stimuli, trained innate immunity is characterized by the enhanced non-specific response, which is regulated by substantial metabolic alterations and epigenetic reprogramming. Trained immunity is acquired by two main reprogramming, namely, epigenetic reprogramming and metabolic adaptation/reprogramming. Epigenetic reprogramming causes changes in gene expression and cell physiology, resulting in internal cell signaling and/or accelerated and amplified cytokine release. Metabolic changes due to trained immunity induce accelerated glycolysis and glutaminolysis. As a result, trained immunity can have unfavorable outcomes, such as hyper inflammation and the development of cardiovascular diseases, autoinflammatory diseases, and neuroinflammation. In this review, the current scenario in the area of trained innate immunity, its mechanisms, and its involvement in immunological disorders are briefly outlined.Copyright © 2022

10.
Biomedical and Pharmacology Journal ; 16(1):329-337, 2023.
Article in English | EMBASE | ID: covidwho-2298195

ABSTRACT

SARS-CoV-2 is a kind of coronavirus that produces Covid-19 illness, which is still a public health concern in Indonesia. Meanwhile, an effective drug has not yet been found and although vaccination has been carried out, in several regions and neighboring countries there is still an increase in Covid-19 cases. This study aimed to obtain bioactive compounds from sea urchins (Echinometra mathaei) that have greater antiviral potential and lower toxicity than remdesivir. This research was started by predicting druglikeness with SwissADME, followed ADMET predicition with pkCSM online, and docking of molecule using the Molegro Virtual Docker (MVD) 5.5 software against the main protease (Mpro) target (PDB ID: 6W63). The results showed that six compounds from sea urchins (Echinometra mathaei) had antiviral activity, where the bioactive compound from sea urchins (Echinometra mathaei) with the highest affinity was shown by Spinochrome C a smaller rerank score compared with Remdesivir and native ligand (X77). So that Spinochrome C compounds are candidates as SARS-CoV-2 inhibitors potential developed drug.Copyright Published by Oriental Scientific Publishing Company © 2023.

11.
New Journal of Chemistry ; 46(39):18824-18831, 2022.
Article in English | EMBASE | ID: covidwho-2295520

ABSTRACT

The study of tautomerism in biologically relevant heterocycles is essential, as it directly affects their chemical properties and biological function. Lactam-lactim tautomerization in pyridine/pyrazine derivatives is such a phenomenon. Favipiravir, a pyrazine derivative, is an essential antiviral drug molecule having notable performance against SARS-CoV-2. Along with a better yielding synthetic method for favipiravir, we have also investigated the lactam-lactim tautomerization of favipiravir and its analogous molecules. Most of these molecules were crystalized and studied for various interactions in their lattice. Many interesting supramolecular interactions such as hydrogen bonding, pi-pi stacking and halogen bonding were revealed during the analysis. Some of these structures show interesting F-F halogen bonding and water channels in their solid state.Copyright © 2022 The Royal Society of Chemistry.

12.
Pharmacological Research - Modern Chinese Medicine ; 5 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2277071

ABSTRACT

The dried fruit of Amomum tsao-ko Crevost & Lemarie, a perennial herb of Cardamom in Zingiberaceae, has been widely used in food and as a folk medicine. It is used not only as an important food additive and spice for removing peculiar smell and improving taste, but also as a traditional Chinese medicine with significant efficacy in treating many kinds of disorders. Based on the high edible and medicinal value, large amounts of investigation have been reported for A. tsaoko in the past several years. This review specifically summarises its quality control, toxicology and clinical application, about which no literature had systematically reviewed, based on our best acknowledge. The current quality control of A. tsaoko is based on the content of volatile oil, which should be no less than 1.4% according to the Pharmacopoeia of the People's Republic of China (2020 edition), while a more possible Q-Markers should be developed to focus on either a specific bioactive ingredient or a component correlated with a certain clinical efficacy. Toxicity research suggests that A. tsaoko actually belongs to the non-toxic substance, although citral and 1,8-cineole, two main components of A. tsaoko, is hepatotoxic for the former and displays low acute toxicity and sub-chronic oral toxicity for the latter, but no obviously accumulative toxicity has so far been discovered for A. tsaoko. In clinical practice, A. tsaoko is often used in treatment of dampness/cold resistance, malaria, vomiting, fullness and epigastric distension across additional disorders, such as SARS, COVID-19 and hepatitis.Copyright © 2022 The Author(s)

13.
BIOpreparations ; Prevention, Diagnosis, Treatment. 22(4):405-413, 2022.
Article in Russian | EMBASE | ID: covidwho-2274806

ABSTRACT

The severe consequences and high mortality of COVID-19 prompted the development of a wide range of preventive vaccines. The first vaccines to be tested were developed in China and formulated as inactivated SARS-CoV-2 adsorbed on aluminium hydroxide. One of the quality indicators for inactivated adsorbed vaccines is the degree of adsorption, which can be used to control the content not only of non-adsorbed antigen, but also of specific antigen in one dose of a vaccine. The aim of the study was to investigate the possibility of desorbing SARS-CoV-2 antigen from formulated adsorbed vaccines and the possibility of measuring its concentration using the BioScan-SARS-CoV-2 (S) ELISA kit for SARS-CoV-2 S-protein content determination. Material(s) and Method(s): the study used four batches of BBIBP-CorV by CNBG, Sinopharm (China) and three batches of CoronaVac by Sinovac Biotech (China). The authors desorbed SARS-CoV-2 S antigen in accordance with monograph FS.3.3.1.0029.15 of the State Pharmacopoeia of the Russian Federation edition XIV (Ph. Rus.), and quantified it using the BioScan-SARS-CoV-2 (S) ELISA kit by Bioservice Biotechnology Co. Ltd. (Russia). Result(s): mean S-antigen concentrations in the desorbed samples ranged from 61 to 129 ng/mL for BBIBP-CorV and from 461 to 533 ng/mL for CoronaVac. Conclusion(s): the study demonstrated the possibility of specific SARS-CoV-2 antigen desorption from the surface of aluminium hydroxide using the Ph. Rus. method, as well as the possibility of S-antigen quantification in desorbed medicinal products and supernatants using the BioScan-SARS-CoV-2 (S) ELISA kit. The authors observed 3.6- to 8.7-fold difference between the S-antigen concentrations of the desorbed preparations by the two manufacturers.Copyright © 2023 Safety and Risk of Pharmacotherapy. All rights reserved.

14.
Antibiotiki i Khimioterapiya ; 67(7-8):19-23, 2022.
Article in Russian | EMBASE | ID: covidwho-2270059

ABSTRACT

Influenza and coronavirus infections are especially dangerous due to being capable of causing pandemics and clinical complications in the nervous and cardiovascular systems, as well as exacerbation of chronic diseases (diabetes mellitus, heart failure, chronic obstructive bronchopneumonia, etc.), which can cause delayed death, especially in children under two years of age, the elderly, and individuals with poor health. The aim of the study was to search for compounds effective against these two topical viruses which possess constant epidemic activity - influenza virus and betacoronavirus - among new adamantane derivatives containing a NO-donor fragment or a dopamine residue. Another purpose of the study was determination of cytotoxicity and antiviral activity of compounds on cell lines permissive for influenza virus and betacoronavirus. The antiviral activity of 6 adamantane derivatives against strains of the influenza virus (H1N1) and betacoronavirus was studied. It was established that the NO-donor derivative of aminoadamantane succinate and the dopamine derivative of adamantanebenzoic acid had the greatest ability to suppress the development of the influenza virus with a chemotherapeutic index above 60. No promising compounds against betacoronavirus were identified.Copyright © Team of Authors, 2022.

15.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

16.
Ankara Universitesi Eczacilik Fakultesi Dergisi ; 46(1):62-77, 2022.
Article in English | EMBASE | ID: covidwho-2259831

ABSTRACT

Objective: SARS-CoV-2 associated viral pandemic was first reported in Wuhan, China, in December 2019. Due to the rapid increase in its pathogenicity, SARS-CoV-2 was declared a global pandemic by WHO on March 11, 2020. For that reason, determining the most attractive viral protein targets became a must. One of the most important target proteins is SARS-COV-2 RNA-dependent RNA polymerase (RdRp) on which COVID-19 depends in its replication process. This study aimed to examine the possible interactions between RdRp and the most promising RdRp nucleoside inhibitors especially Purine nucleoside analogs, to detect the most important residues that commonly interact with RdRp's inhibitors and to investigate whether if there any mutations have been observed so far in these residues or not. Material(s) and Method(s): Molecular docking studies were carried out using AutoDock Vina between SARS-CoV-2 RdRp and drugs approved against different viral RdRps (Galidesivir, Remdesivir, Ribavirin, Sofosbuvir, and Favipiravir) as well as physiological nucleotides (ATP and GTP). Based on the obtained results, a detailed surface-interaction analysis was also performed using Pymol and Discovery Studio Visualizer software for the models that exhibited the most suitable location and configuration in space. Result and Discussion: All the tested molecules were able to bind to SARS-CoV-2 RdRp successfully. Also, they all commonly interact with 9 different amino acids (Arg553, Arg555, Asp618, Asp623, Ser682, Asn691, Ser759, Asp760, and Asp761), and 3 different Template-primer RNA nucleotides (U10, A11, and U20) causing inhibition of viral RdRp via non obligate RNA chain termination.Copyright © 2022 University of Ankara. All rights reserved.

17.
Journal of the Indian Chemical Society ; 100(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2257002

ABSTRACT

In this work, an analysis has been done to describe the molecular structure, spectroscopic, reduced density gradient, topological properties, atomic charges, Lipinski rule, Natural bond orbital analysis, docking and molecular dynamics simulation of the potent antiviral drug EIDD-2801 in the effective treatment against COVID-19. Intramolecular charge distribution is well understood by three schemes such as AIM, Mulliken and NBO analysis and non-covalent interactions have been understood through reduced density gradient. Topological properties, such as charge density and Laplacian of charge density along with the electron localization function, make it easy to obtain comprehensive information about bond strengths and critical points. The details obtained from the calculation of global reactivity descriptors and Lipinski rule are useful for understanding the nature of molecular reactivity and site selectivity. Electrostatic potentials help to identify potential electrophilic and nucleophilic sites for interaction between EIDD-2801 and target proteins. The molecular docking combined with molecular dynamic simulation studies enables us to get better picture about the ligand-protein interaction.Copyright © 2023 Indian Chemical Society

18.
Haseki Tip Bulteni ; 61(1):14-22, 2023.
Article in English | EMBASE | ID: covidwho-2251419

ABSTRACT

Aim: "We're not just fighting an epidemic;we're fighting an infodemic," said World Health Organization Director-General Tedros Adhanom Ghebreyesus at the Munich Security Conference. In this context, we examined vitamin-mineral use frequency as influenced by cyberchondria, or E-health literacy level, and related factors during the coronavirus disease-2019 outbreak. Method(s): In this cross-sectional study, participants who were admitted to the outpatient clinics in a tertiary hospital between March 2021 and April 2021 were asked questions on socio-demographic data, the presence of vitamin and mineral use, and knowledge. The cyberchondria scores by the cyberchondria severity scale and the E-health literacy scores by the electronic health literacy scale were assessed based on nutrition type choice. The use of vitamins and minerals was compared between regular and non-regular supplement users. Factors related to the presence of nutritional supplement use were assessed through logistic regression analysis. Result(s): A total of 417 participants, including those aged 39.3+/-12.09 years, were found to be regular nutritional supplement users at a rate of 52.99% during the outbreak. The most commonly used supplements were vitamin D (62.8%), vitamin C (54.4%), vitamin B12 (39.6%), zinc (37.9%), magnesium (35.7%), and iron (33.60%). The least used supplement was melatonin (5.30%). Iron, calcium, and vitamin A users had a higher cyberchondria score than non-users (p=0.002, p=0.044, and p=0.030, respectively). However, zinc, selenium, magnesium, calcium, vitamin B6, vitamin C, omega-3 fish oil, and probiotic users had a higher E-health literacy score than non-users (p<0.001, p=0.018, p<0.001, p=0.009, p=0.047, p=0.018, p=0.002, p=0.002, respectively). Logistic regression analyses identified higher E-health literacy [odds ratio (OR)=1.077;95% confidence interval (CI): 1.042-1.115;p<0.001], female sex (OR=1,659;95% CI: 1,005-2,737;p=0.048), graduated from university (OR=2,536;95% CI: 1,009-6,374;p=0.048), presence of health professional's advice (OR=3,716;95% CI: 2,260-6,119;p<0.001) and chronic disease presence (OR=2,755;95% CI: 1,420-5,347;p=0.003) were predictors of supplement usage during the outbreak. Conclusion(s): Higher E-health literate women with comorbidities were likely nutritional supplement users during the outbreak, regardless of cyberchondria severity or age generation differences.Copyright © 2023 by The Medical Bulletin of Istanbul Haseki Training and Research Hospital The Medical Bulletin of Haseki published by Galenos Yayinevi.

19.
Journal of Pure and Applied Microbiology ; 17(1):385-394, 2023.
Article in English | EMBASE | ID: covidwho-2251155

ABSTRACT

SARS-CoV-2 is continually evolving with the emergence of new variants with increased viral pathogenicity. The emergence of heavily mutated Omicron (B.1.1.529) with spike protein mutations are known to mediate its higher transmissibility and immune escape that has brought newer challenges for global public health to contain SARS-CoV-2 infection. One has to come up with a therapeutic strategy against the virus so as to effectively contain the infection and spread. Natural phytochemicals are being considered a significant source of bioactive compounds possessing an antiviral therapeutic potential. Being a promising anticancer and chemo-preventive agent, Silybin holds a significant potential to be used as a therapeutic. In the present study, molecular docking of Silybin with Omicron spike protein (7QNW) was carried out. Molecular docking results showed greater stability of Silybin in the active site of the Omicron spike protein with suitable binding mode of interactions. The study reveals that Silybin has the potential to block the host ACE2 receptor-viral spike protein binding;thereby inhibiting the viral entry to human cells. Therefore, Silybin may be further developed as a medication with the ability to effectively combat SARS-CoV-2 Omicron.Copyright © The Author(s) 2023.

20.
Open Access Macedonian Journal of Medical Sciences ; Part B. 11:134-140, 2023.
Article in English | EMBASE | ID: covidwho-2250004

ABSTRACT

BACKGROUND: Since pregnancy increases the risk of coronavirus disease 2019 (COVID-19) and its morbidity in pregnant women, it is necessary and recommended to prevent COVID-19 in pregnant women by vaccination such as by messenger RNA (mRNA) and inactivated vaccines. SARS-CoV-2 antibodies produced from vaccination have different results according to the type of vaccine given. The previous studies showed that IgG SARS-CoV-2 antibody levels were influenced by various factors such as gestational weeks at the time when vaccines were given. Moreover, there have been no previous studies on the effect of gestational age on quantitative IgG levels after the second dose of the vaccine especially in Indonesia during this pandemic due to some restrictions on daily activities. AIM: The aim of this study is to see the effect of giving the COVID-19 vaccine based on maternal gestational age (in trimester units) on maternal immunity (IgG SARS-CoV-2) in Dr. Hasan Sadikin General Hospital Bandung, Bandung Kiwari Hospital and Dr. Slamet Hospital, Garut. METHOD(S): This was a retrospective and cohort study by taking secondary data using consecutive sampling from the previous tests on the levels of SARS-CoV-2 IgG antibodies after two doses of inactivated vaccine and mRNA. Healthy pregnant women 14-34 weeks at the Department of Obstetrics and Gynecology, Dr. Hasan Sadikin (RSHS) Bandung, Bandung Kiwari Hospital, and Dr. Slamet Hospital for the period October 2021 to January 2022 were the target population of this study. Based on inclusion and exclusion criteria, 103 samples met the criteria. Examination of Maternal SARS-CoV-2 IgG Antibody Levels procedures was carried out using Chemiluminescent Microparticle Immunoassay. Statistical analysis was done using IBM SPSS 28.00 and p < 0.05 was considered statistically significant. RESULT(S): There was no significant difference (p = 0.236, p > 0.05) between the mean maternal age in the mRNA and inactivated vaccine groups. The mRNA and inactivated vaccine groups also had no significant difference in the gestational age category (0.70). There was a significant difference (p = 0.0001) between the levels of SARS-CoV-2 IgG antibodies after the vaccine in the mRNA and inactivated vaccine groups. There was no significant difference in the levels of SARS-CoV-2 IgG antibodies in the gestational age group after the mRNA vaccine (p = 0.426) and after the inactivated vaccine (p = 0.293). There was a significant difference (p < 0.05) in the subgroup analysis in each gestational age group (second trimester and third trimester) between SARS-CoV-2 IgG antibody levels after the mRNA vaccine compared to inactivated vaccine. DISCUSSIONS: The mRNA vaccine is based on the principle that mRNA is an intermediate messenger to be translated to an antigen after delivery to the host cell via various routes. However, inactivated vaccines contain viruses whose genetic material has been destroyed by heat, chemicals, or radiation, so they cannot infect cells and replicate but can still trigger an immune response. The administration of the vaccine in the second and third trimesters of pregnancy has the same results in increasing levels of SARS-CoV-2 IgG antibodies after mRNA and inactivated vaccination in this study. CONCLUSION(S): mRNA vaccination in pregnant women is better than inactivated vaccines based on the levels of IgG SARS-CoV-2 antibodies after vaccination. The maternal trimester of pregnancy was not a factor influencing the levels of SARS-CoV-2 IgG antibodies after either mRNA or inactivated COVID-19 vaccinations in this study.Copyright © 2023 Anita Deborah Anwar, Putri Nadhira Adinda Adriansyah, Ivan Christian Channel, Annisa Dewi Nugrahani, Febriani Febriani, Asep Surachman, Dhanny Primantara Johari Santoso, Akhmad Yogi Pramatirta, Budi Handono.

SELECTION OF CITATIONS
SEARCH DETAIL